翻訳と辞書
Words near each other
・ LaSalle Rail Bridge
・ LaSalle Rapides
・ LaSalle Records
・ Lasalle Secondary School
・ LaSalle Speedway
・ LaSalle Street
・ LaSalle Street Auto Row Historic District
・ LaSalle Street Cable Car Powerhouse (Chicago)
・ LaSalle Street Station
・ LaSalle Street Tunnel
・ LaSalle Thompson
・ LaSalle Towers Apartments
・ LaSalle Township, LaSalle County, Illinois
・ LaSalle Trail
・ LaSalle Vipers
LaSalle's invariance principle
・ LaSalle, Colorado
・ Lasalle, Gard
・ LaSalle, Illinois
・ LaSalle, Ontario
・ LaSalle, Quebec
・ LaSalle-Peru High School
・ LaSalle-Wacker Building
・ LaSalle/Van Buren (CTA station)
・ Lasalleola
・ LaSalle—Émard
・ LaSalle—Émard—Verdun
・ Lasallia
・ Lasallia papulosa
・ Lasallia pustulata


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

LaSalle's invariance principle : ウィキペディア英語版
LaSalle's invariance principle
LaSalle's invariance principle (also known as the invariance principle, Barbashin-Krasovskii-LaSalle principle, or Krasovskii-LaSalle principle ) is a criterion for the asymptotic stability of an autonomous (possibly nonlinear) dynamical system.
== Global version ==

Given a representation of the system
: \dot(\mathbf x) \le 0 for all \mathbf x (negative semidefinite)
Let be the union of complete trajectories contained entirely in the set \. Then the set of accumulation points of any trajectory is contained in .
If we additionally have that the function V is positive definite, i.e.
: V( \mathbf x) > 0 , for all \mathbf x \neq \mathbf 0
: V( \mathbf 0) = 0
and if contains no trajectory of the system except the trivial trajectory \mathbf x(t) = \mathbf 0 for t \geq 0, then the origin is asymptotically stable.
Furthermore, if V is radially unbounded, i.e.
: V(\mathbf x) \to \infty , as \Vert \mathbf x \Vert \to \infty
then the origin is globally asymptotically stable.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「LaSalle's invariance principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.